7 research outputs found

    Effect of the geometry of butt-joint implant-supported restorations on the fatigue life of prosthetic screws.

    Get PDF
    [EN] STATEMENT OF PROBLEM: Dental implant geometry affects the mechanical performance and fatigue behavior of butt-joint implant-supported restorations. However, failure of the implant component has been generally studied by ignoring the prosthetic screw, which is frequently the critical restoration component. PURPOSE: The purpose of this invitro study was to evaluate the effect of 3 main implant geometric parameters: the implant body diameter, the platform diameter, and the implant-abutment connection type (external versus internal butt-joint) on the fatigue life of the prosthetic screw. The experimental values were further compared with the theoretical ones obtained by using a previously published methodology. MATERIAL AND METHODS: Four different designs of direct-to-implant dental restorations from the manufacturer BTI were tested. Forty-eight fatigue tests were performed in an axial fatigue testing machine according to the International Organization for Standardization (ISO) 14801. Linear regression models, 95% interval confidence bands for the linear regression, and 95% prediction intervals of the fatigue load-life (F-N) results were obtained and compared through an analysis of covariance (ANCOVA) to determine the influence of the 3 parameters under study on the fatigue behavior (alpha=.05). RESULTS: Linear regression models showed a statistical difference (P<.001) when the implant body diameter was increased by 1 mm; an average 3.5-fold increase in fatigue life was observed. Increasing the implant abutment connection diameter by 1.4 mm also showed a significant difference (P<.001), leading to 7-fold longer fatigue life on average. No significant statistical evidence was found to demonstrate a difference in fatigue life between internal and external implant-abutment connection types. CONCLUSIONS: Increasing the implant platform and body diameter significantly improved (P<.001) the fatigue life of the prosthetic screw, whereas external and internal connections provided similar results. In addition, experimental results proved the accuracy of the fatigue life prediction methodology

    On the Use of a Simplified Slip Limit Equation to Predict Screw Self-Loosening of Dental Implants Subjected to External Cycling Loading

    Get PDF
    Self-loosening of the prosthetic screws is a major mechanical problem affecting roughly 10% of dental implants, according to the literature. This phenomenon may lead to micro-movements that produce crestal bone loss, peri-implantitis, or structural failure of the implant assembly. In this paper, a simple and effective tool to predict self-loosening under masticatory loads is presented. The loads acting on the screw are obtained from a simple finite element (FE) model, and introduced in a mathematical formula that calculates the torque needed to loosen the screw; self-loosening will occur when this torque becomes zero. In this sense, all the parameters involved in self-loosening phenomenon can be easily identified, and their effect quantified. For validating purposes, 90 experimental tests were performed in a direct stress test bench. As a result, a powerful tool with a maximum experimental error of 7.6% is presented, allowing dental implant manufacturers to predict eventual occurrence of self-loosening in their developed dental implant products and take corrective actions at preliminary design stage. Furthermore, the following clinical implications can be directly derived from the methodology: a higher screw preload, that is a higher tightening torque, improves self-loosening response of the dental implant and, similarly, for a given preload force, higher friction coefficient and screw metric, as well as lower pitch and thread angle values, are also found to be beneficial.This work has received financial support of the Basque Government [grant number IT947-16]

    Using nodal coordinates as variables for the dimensional synthesis of mechanisms

    Get PDF
    The method of the lower deformation energy has been successfully used for the synthesis of mechanisms for quite a while. It has shown to be a versatile, yet powerful method for assisting in the design of mechanisms. Until now, most of the implementations of this method used the dimensions of the mechanism as the synthesis variables, which has some advantages and some drawbacks. For example, the assembly configuration is not taken into account in the optimization process, and this means that the same initial configuration is used when computing the deformed positions in each synthesis point. This translates into a reduction of the total search space. A possible solution to this problem is the use of a set of initial coordinates as variables for the synthesis, which has been successfully applied to other methods. This also has some additional advantages, such as the fact that any generated mechanism can be assembled. Another advantage is that the fixed joint locations are also included in the optimization at no additional cost. But the change from dimensions to initial coordinates means a reformulation of the optimization problem when using derivatives if one wants them to be analytically derived. This paper tackles this reformulation, along with a proper comparison of the use of both alternatives using sequential quadratic programming methods. In order to do so, some examples are developed and studied.The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its support through Grant DPI2013-46329-P and DPI2016-80372-R. Additionally the authors wish to thank the Education Department of the Basque Government for ist support through grant IT947-16

    Inspection scheduling based onreliability updating of gas turbinewelded structures

    Get PDF
    This article presents a novel methodology for the inspection scheduling of gas turbine welded structures, based on reliability calculations and overhaul findings. The model was based on a probabilistic crack propagation analysis for welds in a plate and considered the uncertainty in material properties, defect inspection capabilities, weld geometry, and loads. It developed a specific stress intensity factor and an improved first-order reliability method. The proposed routine alleviated the computational cost of stochastic crack propagation analysis, with accuracy. It is useful to achieve an effective design for manufacturing, to develop structural health monitoring applications, and to adapt inspection schedules to airplane fleet experience.We are grateful to the Mechanical Technology Department of ITPAero (R) for supporting and helping us with this study. The invaluable guidance and feedback from Jose Ramon Andujar is recognized with great appreciation

    Fatigue performance of prosthetic screws used in dental implant restorations: Rolled versus cut threads

    Get PDF
    Statement of problem. Cold rolling is widely used for screw thread manufacturing in industry but is less common in implant dentistry, where cutting is the preferred manufacturing method. Purpose. The purpose of this in vitro study was to compare the surface finish and mechanical performance of a specific model of prosthetic screw used for direct restorations manufactured by thread rolling and cutting. Material and methods. The thread profiles were measured in an optical measuring machine, the residual stresses in an X-ray diffractometer, the surface finish in a scanning electron microscope, and then fatigue and static load tests were carried out in a direct stress test bench according to the International Organization for Standardization (ISO) 14801. Finally, linear regression models and 95% interval confidence bands were calculated and compared through ANCOVA for fatigue tests while the t test was used for statistical comparisons (a=.05). Results. The surface finish was smoother, and compressive residual stresses were higher for the roll threaded screws. Linear regression models showed a fatigue life 9 times higher for roll-threaded screws (P=1) without affecting static behavior, which showed statistically similar static strengths (P=.54). However, the thread profile in the roll-threaded screws was not accurately reproduced, but this should be easily corrected in future prototypes. Conclusions. Rolling was demonstrated to be a better thread-manufacturing process for prosthetic screws, producing improved surface quality and fatigue behavior

    An efficient LDU algorithm for the minimal least squares solution of linear systems

    Get PDF
    The minimal least squares solutions is a topic of interest due to the broad range of applications of this problem. Although it can be obtained from other algorithms, such as the Singular Value Decomposition (SVD) or the Complete Orthogonal Decomposition (COD), the use of LDU factorizations has its advantages, namely the computational cost and the low fill-in that can be obtained using this method. If the right and left null-subspaces (which can also be named as Null and Image subspaces, respectively) are to be obtained, the use of these factorizations leads to fundamental subspaces, which are sparse by definition. Here an algorithm that takes advantage of both the Peters-Wilkinson method and Sautter method is presented. This combination allows for a good performance in all cases. The method also optimizes memory use by storing the right null-subspace and the left null-subspace in the factored matrix.The authors wish to thank the Spanish Ministry of Economy and Competitiveness for its support through grant DPI2016-80372-R, which also includes funding through European FEDER program; and the Education Department of the Basque Government for its support through grant IT947-16

    Fatigue Design of Dental Implant Assemblies: A Nominal Stress Approach

    Get PDF
    Fatigue is the most common mechanical failure type in dental implants. ISO 14801 standardizes fatigue testing of dental implants, providing the load-life curve which is most useful for comparing the fatigue behavior of different dental implant designs. Based on it, many works were published in the dental implant literature, comparing different materials, component geometries, connection types, surface treatments, etc. These works are useful for clinicians in order to identify the best options available in the market. The present work is intended not for clinicians but for dental implant manufacturers, developing a design tool that combines Finite Element Analysis, fatigue formulation and ISO 14801 experimental tests. For that purpose, 46 experimental tests were performed on BTI INTERNA® IIPSCA4513 implants joined with INPPTU44 abutments by means of INTTUH prosthetic screws under three different tightening torque magnitudes. Then, the load case was reproduced in a FE model from where the nominal stress state in the fatigue critical section was worked out. Finally, Walker criterion was used to represent accurately the effects of mean stress and predict fatigue life of the studied dental implant assembly, which can be extended to most of the products of BTI manufacturer. By means of this tool, dental implant manufacturers will be able to identify the critical design and assembly parameters in terms of fatigue behavior, evaluate their influence in preliminary design stages and consequently design dental implants with significantly better fatigue response which in turn will reduce future clinical incidences.This work has received financial support of the Basque Government [grant number IT947-16]
    corecore